

#### **Product Features**

- ♦ Supports 1.25Gbps/1.0625Gbps bit rates
- ♦ Bi-Directional SC/PC connector
- ♦ Hot pluggable SFP footprint
- ♦ 1490nm DFB laser and 1550nm APD photo detector
- ♦ 1550nm DFB laser and 1490nm APD photo detector
- 37dB link budget for up to 160km transmission on G.652 SMF
- ♦ Low power consumption, < 1.0W</p>
- ♦ Digital Diagnostic Monitor Interface
- ♦ Compliant with SFP MSA and SFF-8472
- Very low EMI and excellent ESD protection
- ♦ Operating case temperature: Commercial:0 to 70 °C

Industrial:-40 to 85 °C

## **Applications**

- ♦ Gigabit Ethernet
- ♦ Fiber Channel
- Switch to Switch interface
- ♦ Switched backplane applications
- ♦ Router/Server interface
- ♦ Other Optical Links

# **Ordering Information**

| Part Number     | Output Power             | Rec. Sens | Data Rate | Wavelength      | Distance |
|-----------------|--------------------------|-----------|-----------|-----------------|----------|
| FH-SB4512CDS160 | FH-SB4512CDS160 3 ~ 7 db |           | 1.25G     | TX1490/RX1550nm | 160km    |





## General

FH-SB4512CDS160 SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 120km transmission distance with SMF. The transceiver consists of three sections: a DFB laser transmitter, a APD photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

# **Absolute Maximum Ratings**

| Parameter           | Symbol | Min. | Max. | Unit | Note |
|---------------------|--------|------|------|------|------|
| Supply Voltage Vcc  |        | -0.5 | 4.0  | V    |      |
| Storage Temperature | Ts     | -40  | 85   | °C   |      |
| Relative Humidity   | RH     | 0    | 85   | %    |      |

Note: Stress in excess of the maximum absolute ratings can cause permanent damage to the module

# **General Operating Characteristics**

| Parameter            | Symbol           | Min. | Тур  | Max. | Unit | Note |
|----------------------|------------------|------|------|------|------|------|
| Data Rate            | DR               |      | 1250 |      | Gb/s |      |
| Supply Voltage       | Vcc              | 3.13 | 3.3  | 3.47 | V    |      |
| Supply Current       | Icc <sub>5</sub> |      |      | 220  | mA   |      |
| Operating Case Temp. | Tc               | 0    |      | 70   | °C   |      |
| Operating Case Temp. | TI               | -40  |      | 85   | °C   |      |



# **Electrical Input/Output Characteristics**

| Parameter                  |         | Symbol | Min. | Тур | Max.    | Unit | Note |
|----------------------------|---------|--------|------|-----|---------|------|------|
| Transmitter                |         |        |      |     |         |      |      |
| Diff. input voltage        | e swing |        | 200  |     | 2000    | mVpp | 1    |
| Tx Disable input           | Н       | VIH    | 2.0  |     | Vcc+0.3 | V    |      |
| TX Disable iliput          | L       | VIL    | 0    |     | 0.8     | V    |      |
|                            | Н       | VOH    | 2.0  |     | Vcc+0.3 | V    | 2    |
| Tx Fault output            | L       | VOL    | 0    |     | 0.8     | V    | 2    |
| Input Diff. Imped          | dance   | Zin    |      | 100 |         | Ω    |      |
| Receiver                   |         |        |      |     |         |      |      |
| Diff. output voltage swing |         |        | 400  |     | 1600    | mVpp | 3    |
| Rx LOS Output              | Н       | VOH    | 2.0  |     | Vcc+0.3 | V    | 2    |
|                            | L       | VOL    | 0    |     | 0.8     |      | 2    |

#### Notes:

# **Optical Characteristics**

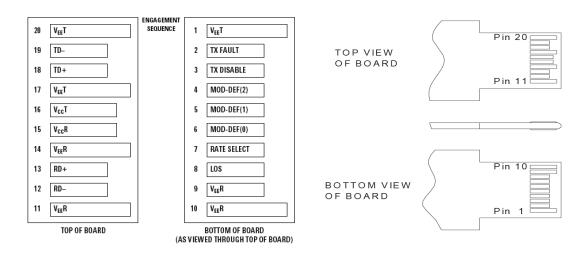
| Parameter                    | Symbol | Min. | Тур  | Max. | Unit | Note |  |  |
|------------------------------|--------|------|------|------|------|------|--|--|
| Transmitter                  |        |      |      |      |      |      |  |  |
| Operating Wavelength         | λ      | 1470 | 1490 | 1510 | nm   |      |  |  |
| Ave. output power (Enabled)  | PAVE   | 3    |      | 7    | dBm  | 1    |  |  |
| Spectral Width (-20dB)       |        |      |      | 3    | nm   |      |  |  |
| Mean Launched Power (TX Off) |        |      |      | -45  | dB   |      |  |  |
| Extinction Ratio             |        | 9    |      |      | dB   |      |  |  |
| Total Jitter                 | UI     |      |      | 0.43 |      |      |  |  |

<sup>1.</sup> TD+/- are internally AC coupled with  $100\Omega$  differential termination inside the module.

<sup>2.</sup> Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to  $10k\Omega$  resistors on the host board. Pull up voltage between 2.0V and Vcc+0.3V.

<sup>3.</sup>RD+/- outputs are internally AC coupled, and should be terminated with  $100\Omega$  (differential) at the user SERDES.




#### FH-SB4512CDS160 1.25G WDM TX1490/RX1550 160KM DDMI SC

| Output Optical Eye Compliant with IEEE802.3 z (class 1 aser safety) |       |     |  |     |     |   |  |  |
|---------------------------------------------------------------------|-------|-----|--|-----|-----|---|--|--|
| Receiver                                                            |       |     |  |     |     |   |  |  |
| Operating Wavelength λ 1530 1550 1570 nm                            |       |     |  |     |     |   |  |  |
| Receiver Sensitivity                                                | Psen1 |     |  | -34 | dBm | 3 |  |  |
| Overload                                                            | PAVE  | -3  |  |     | dBm | 3 |  |  |
| LOS Assert                                                          | Pa    | -25 |  |     | dBm |   |  |  |
| LOS De-assert                                                       | Pd    |     |  | -34 | dBm |   |  |  |
| LOS Hysteresis                                                      | Pd-Pa | 0.5 |  |     | dB  |   |  |  |

#### Notes:

- 1.Measured at 1250Mb/s with PRBS 2 2<sup>23-1</sup>NRZ test pattern.
- 2.Unfiltered, measured with a PRBS2 $^{23-1}$  test pattern @1.25Gbps
- 3.Measured at 1250Mb/s with PRBS  $2^{23-1}$  NRZ test pattern for BER  $< 1x10^{-12}$

## **Pin Definitions And Functions**



| Pin | Symbol   | Level / Logic | Description                                                 |
|-----|----------|---------------|-------------------------------------------------------------|
| 1   | VeeT     |               | Module Transmitter Ground                                   |
| 2   | Tx_Fault | LVTTL-O       | Module Transmitter Fault Indication                         |
| 3   | Tx_DIS   | LVTTL-I       | Transmitter Disable; Active High Disable Transmitter Output |
| 4   | SDA      | LVTTL-I       | 2-Wire Serial Interface Data Line                           |
| 5   | SCL      | LVTTL-I/O     | 2-Wire Serial Interface Clock                               |



#### FH-SB4512CDS160 1.25G WDM TX1490/RX1550 160KM DDMI SC

| 6  | MOD_ABS | LVTTL-O | Module Absent, connected to ground in the module |
|----|---------|---------|--------------------------------------------------|
| 7  | RS0     |         | Not Connected                                    |
| 8  | RX_LOS  | LVTTL-O | Loss of Receiver Signal Indication               |
| 9  | RS1     |         | Not Connected                                    |
| 10 | VeeR    |         | Module Receiver Ground                           |
| 11 | VeeR    |         | Module Receiver Ground                           |
| 12 | RD-     | CML-O   | Receiver Inverted Data Output                    |
| 13 | RD+     | CML-O   | Receiver Non-Inverted Data Output                |
| 14 | VeeR    |         | Module Receiver Ground                           |
| 15 | VccR    |         | Module Receiver 3.3V Supply                      |
| 16 | VccT    |         | Module Transmitter 3.3V Supply                   |
| 17 | VeeT    |         | Module Transmitter Ground                        |
| 18 | TD+     | CML-I   | Transmitter Non-Inverted Data Input              |
| 19 | TD-     | CML-I   | Transmitter Inverted Data Input                  |
| 20 | VeeT    |         | Module Transmitter Ground                        |

#### Notes:

- 1. When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a  $4.7 10 \mathrm{K}\Omega$  resistor on the host board.
- 2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7 10 \mathrm{K}\Omega$  resistor. Its states are:

Low (0-0.8V): Transmitter on (>0.8, < 2.0V): Undefined High  $(2.0V \sim Vcc+0.3V)$ : Transmitter Disabled Open: Transmitter Disabled

3.Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a  $4.7K-10K\Omega$  resistor on the host board. The pull-up voltage shall be between  $2.0V\sim Vcc+0.3V$ .

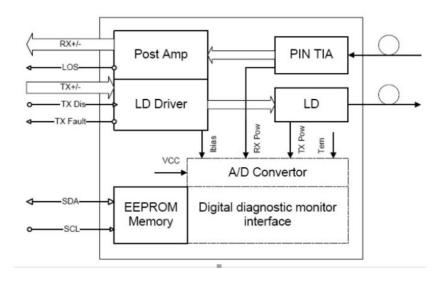
Mod-Def 0 has been grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

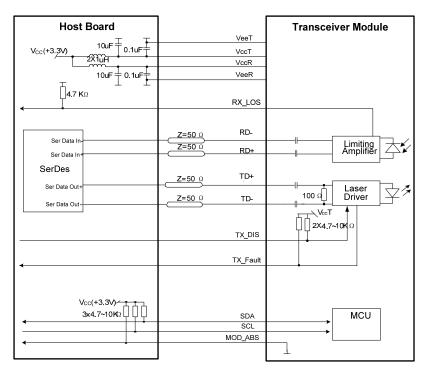
- 4. When high, this output indicates loss of signal (LOS). Low indicates normal operation.
- 5.RD+/-: These are the differential receiver outputs. They are AC coupled  $100\Omega$  differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
- 6. TD+/-: These are the differential transmitter inputs. They are AC-coupled, differential lines with  $100\Omega$  differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.



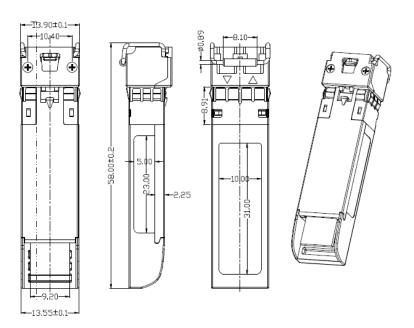

# Diagnostics

| Parameter                    | Symbol          | Units | Min. | Max. | Accuracy | Note |
|------------------------------|-----------------|-------|------|------|----------|------|
| Transceiver temperature      | <b>D</b> тетр-Е | °C    | -45  | +90  | ±5°C     | 1    |
| Transceiver supply voltage   | DVoltage        | V     | 2.8  | 4.0  | ±3%      |      |
| Transmitter bias current     | DBias           | mA    | 2    | 80   | ±10%     | 2    |
| Transmitter output power     | DTx-Power       | dBm   | -3   | +8   | ±3dB     |      |
| Receiver average input power | DRx-Power       | dBm   | -35  | 0    | ±3dB     |      |

- Notes:


  1. When Operating temp.=0~70 °C, the range will be min=-5, Max=+75
- 2. The accuracy of the Tx bias current is 10% of the actual current from the laser driver to the laser
- 3. Internal/ External Calibration compatible.

# **Functional Diagram**






# **Typical Interface Circuit**



# **Package Dimensions**





## **For More Information**

### FANG HANG TECH LIMITED

Office: 908 Room, Jingyuan Building, 28 Bulong Rd, Longgang District, Shenzhen. China

Tel: +86-755-89584520 Fax: +86-755-89584520

sales@fanghangtech.com

www.fanghangtech.com